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1 R Environment Setup
R Packages are installed (if needed):
install.packages("tidyverse") # Compilation of packages for data management
install.packages("here") # Provides a relative path to files
install.packages("gt") # Create Presentation-Ready Display Tables
install.packages("devtools") # Collection of package development tools
devtools::install_github("jbisanz/qiime2R") # Import QIIME2 artifacts to R
install.packages("vegan") # Functions for community ecologists
install.packages("BiocManager") # Open source software for Bioinformatics
BiocManager::install("phyloseq") # Explore microbiome profiles using R
BiocManager::install("microbiome") # Utilities for microbiome analysis

Libraries are activated:
library(tidyverse)
library(readxl)
library(here)
library(gt)
library(qiime2R)
library(vegan)
library(phyloseq)
library(microbiome)

A standardized set of colors was chosen to represent metadata properties of the samples:
# Specify specific colors for important metadata
color_palette <- c(`CRC+HPV` = "deeppink", CRC = "deepskyblue")

Custom Functions:
# Used to create Beta Diversity Ordination Plots
# phyobj = Phyloseq Object | ordobj = Ordination Object

ordination_plotting <- function(phyobj, ordobj) {
plot_ordination(phyobj, ordobj, color = "condition") +
geom_point(size = 5, alpha = 0.5) +
scale_color_manual(values = color_palette) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(color = "Condition") }

# Function to create a boxplot using ggplot2
# data = Data Frame

plotbox <- function(data) {
boxq1 <- quantile(data$Abundance, 0.1)
boxq9 <- quantile(data$Abundance, 0.9)
box_data <- data %>% filter(data$Abundance >= boxq1 & data$Abundance <= boxq9)

ggplot(data, aes(x = condition, y = Abundance, fill = condition)) +
geom_boxplot(outliers = FALSE) +
geom_point(data = box_data, mapping = aes(x = condition, y = Abundance),

color = "black", position = "jitter") +
labs(x = "Condition") +
scale_fill_manual(values = color_palette) +
theme(legend.position = "Hide", plot.title = element_text(hjust = 0.5)) }
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# Calculate averages & perform t-test
# group1 = Data Frame 1 | group2 = Data Frame 2

groupavg <- function(group1, group2) {
mean1 <- mean(group1$Abundance)
mean2 <- mean(group2$Abundance)
ttest <- t.test(group1$Abundance, group2$Abundance)$p.value
result <-

paste("CRC Average =", mean1," ", "CRC + HPV Average =", mean2,'\n',"T-Test, p =", ttest)
cat(result, "\n") }

Note on plotbox(): To keep boxplots organized, outliers (as calculated by geom_boxplot) have been
excluded from plots. In order to include more sample points, the dataset was slightly constrained using
quantile, and this new data frame was used to plot individual values via geom_point.

Load .RData Objects if necessary:
load("rdata_files/sample_info.RData")
load("rdata_files/gse_physeq.RData")

2 Introduction
16S RNA Sequencing data from colorectal cancer (CRC) patient stool samples with or without concomitant
Human Papilloma Virus (HPV) infection was received via a shared box storage folder. The sequencing was
performed on an Illumina platform, using primers for the V3 & V4 hypervariable regions. The folder
contained one subfolder - fastq_raw, and one file - 2024_04_11_gse216589_metadata_v1.xlsx. The
data files were in fastq format, 40 files total (this was confirmed after downloading using Finder in MacOS).
The metadata associated with the samples listed 11 groups - Condition (either CRC or CRC + HPV),
crc_sex (type of cancer), crc_site (location of cancer), Organism (Homo sapiens), Patient ID, sex
(male or female), Source Name, Time, tumor_grading, and tumor_stage.

2.1 Preparing Sample Metadata
The original sample metadata file had a Microsoft Excel extension, and needed to be converted into a tab
separated value document. To do this, the xlsx was imported into R using the read_excel method.
Subsequently, 2024_04_11_gse216589_metadata.tsv was created by running the write.table
command, taking the xlsx as input, and specifying the separator to be used.
xcel_data <- read_excel(here("set02/2024_04_11_gse216589_metadata_v1.xlsx")) %>%

rename(`sample-id` = `sample_id`)

write.table(xcel_data, file = here("2024_04_11_gse216589_metadata.tsv"),
sep = "\t", quote = FALSE, row.names = FALSE)

2.2 Preparing Manifest File
To facilitate import of sequence data into QIIME2, a manifest file was created
(2024_04_11_gse216589_manifest.tsv). The file contains sample ID, along with full path names to the
sequencing files (for each sample). To standardize path names, the here method is used to store the
character string of the RStudio project working directory.
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2.3 Objectives

# Use xcel_data as a table foundation
# Create new columns using mutate, manipulate names (strings) with paste0

there <- here()

gse_manifest <- xcel_data %>%
mutate(`forward-absolute-filepath` =

paste0(there, "/set02/fastq_raw/", `sample-id`, "_1.fastq")) %>%
mutate(`reverse-absolute-filepath` =

paste0(there, "/set02/fastq_raw/", `sample-id`, "_2.fastq")) %>%
select(`sample-id`, `forward-absolute-filepath`, `reverse-absolute-filepath`)

write.table(gse_manifest, here("2024_04_11_gse216589_manifest.tsv"),
sep = "\t", quote = FALSE, row.names = FALSE)

2.3 Objectives
The link between HPV infection and certain types of cancer (depending on viral subtype) has been
demonstrated thoroughly. Far less is known about the impact of HPV infection on the composition of the
intestinal microbiome, especially in patients with CRC. In this analysis, two major groups (CRC+/HPV- and
CRC+/HPV+) were compared to determine if the presence, and/or abundance, of certain bacterial taxa
found in stool samples were significantly different.

3 From FASTQ to QZA
To run QIIME via a command line interface, a system terminal was used. Activating the conda environment
containing QIIME2 is necessary prior to starting.

Importing the sequences into a QIIME archive was completed using the following command:
qiime tools import \

--type SampleData[ PairedEndSequencesWithQuality] \
--input-path 2024_04_11_gse216589_manifest.tsv \
--output-path qiime/2024_04_11_gse216589_demux.qza \
--input-format PairedEndFastqManifestPhred33V2

import is one of the fundamental procedures in the QIIME tools library.

The import method reads the manifest file provided to it, and collects all of the sequence files denoted (along
with their respective sample id) into an archive.

The qza file was used to produce a qzv file:
qiime demux summarize \

--i-data qiime/2024_04_11_gse216589_demux.qza \
--o-visualization qiime/2024_04_11_gse216589_demux.qzv

The sequences, which have already been demultiplexed, were reviewed using QIIME2 View.

Demultiplexing is the method by which sequencing reads are assigned to their sample of origin based on the
sequence of their corresponding DNA barcode (identifier).
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Figure 1. Quality Plot, Forward Reads

The Quality Score reflects the confidence of the sequence data.

Figure 2. Quality Plot, Reverse Reads
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4 Sequence Quality Control
Once the sequence files were imported, the demux summary was created and viewed. For this analysis, the
determination of sequence cutoff location based on quality score was a value of 10. More explicitly, the
parameter used for quality score value was the Lower Whisker value of the bar plot for each base. As the
early reads for both directions are always above a quality score of 20, no sequence was trimmed from left side.
The quality scores of the forward reads remained high (at or above 14) until position 250. It gradually
decreased until a score of 10 for position 288, dropping to 9 after that location. As such, 288 was chosen as
the truncation length for the forward reads. The quality scores of the reverse reads remained high (at or
above 18) until position 157. It gradually decreased until a score of 11 for position 219, dropping to 9 after
that location. As such, 219 was chosen as the truncation length for the reverse reads.

The DADA2 filtering technique utilized is paired end sequence denoising.
qiime dada2 denoise-paired \

--i-demultiplexed-seqs qiime/2024_04_11_gse216589_demux.qza \
--p-trim-left-f 0 \
--p-trim-left-r 0 \
--p-trunc-len-f 288 \
--p-trunc-len-r 219 \
--o-table qiime/gse_table.qza \
--o-representative-sequences qiime/gse_rep_seqs.qza \
--o-denoising-stats qiime/gse_stats.qza

Denoising methods filter out noisy sequences, correct errors in marginal sequences, remove chimeric
sequences, remove singletons, join denoised paired-end reads, and dereplicate those sequences.

To review the denoising statistics, gse_stats.qza was imported into R using the read_qza method from
the qiime2R library.
gse_dada2 <- read_qza(here("qiime/gse_stats.qza"))

gse_dada2$data %>% rownames_to_column() %>% arrange(non.chimeric) %>% gt() %>%
cols_label(`percentage.of.input.passed.filter` = "%.input.passed.filter",

`percentage.of.input.merged` = "%.input.merged",
`percentage.of.input.non.chimeric` = "%.input.non.chimeric")
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Table 1. DADA2 Denoising Statistics

5 Phylogenetic Tree Generation
Using the representative sequences, the fasttree method from QIIME phylogeny was implemented:
qiime phylogeny align-to-tree-mafft-fasttree \

--i-sequences qiime/gse_rep_seqs.qza \
--o-alignment qiime/aligned_gse_rep_seqs.qza \
--o-masked-alignment qiime/masked_aligned_gse_rep_seqs.qza \
--o-tree qiime/unrooted_tree_gse_rep_seqs.qza \
--o-rooted-tree qiime/rooted_tree_gse_rep_seqs.qza
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6 Taxonomic Analysis
In order to assign taxonomy to species present in the samples, a classifier with sequence / feature
information at every taxonomic level is used. This analysis utilized the Silva 138 99% OTUs from
515F/806R region of sequences library.

The selection of the Silva 138 classifier was based on the results of 2 studies (Odom et al., Balvočiūtė et al.).
Silva has historically been updated more frequently than one of the other major classifiers, Greengenes2. In
addition, Silva 138 has a greater number of features (OTU’s) to classify against compared to Greengenes,
allowing more precision in taxonomic assignment, even to the species level. However, as these classifiers have
been trained by QIIME2’s feature-classifier plugin, there are specific properties of the library that are tied
to the QIIME workflow.
qiime feature-classifier classify-sklearn \

--i-classifier qiime/silva-138-99-515-806-nb-classifier.qza \
--i-reads qiime/gse_rep_seqs.qza \
--o-classification qiime/gse_taxonomy.qza

7 Creating a Phyloseq Object
qiime2R has a method (qza_to_phyloseq) to create a Phyloseq object from 3 QIIME archive files & the
metadata tsv.
gse_physeq <-

qza_to_phyloseq(
features = here("qiime/gse_table.qza"), # Feature Table
tree = here("qiime/rooted_tree_gse_rep_seqs.qza"), # Rooted Phylogenetic Tree
taxonomy = here("qiime/gse_taxonomy.qza"), # Taxonomy
metadata = here("2024_04_11_gse216589_metadata.tsv")) # Sample Metadata

7.1 Accessing Metadata
The metadata associated with the Phyloseq object can be obtained using the sample_data method.
However, this is a unique class of the same name, that may not be compatible with all non-ecology libraries.
To make the information accessible in multiple forms, the sample data is stored in the sample_info object,
and the rownames (SampleID) are added as a new column.

In addition, the as_tibble modifier is used to create a “tibble” (data frame) of the information.
sample_info <- sample_data(gse_physeq) # Create a data object of sample metadata

sample_info$SampleID <- rownames(sample_info) # Add Sample ID to metadata table

sample_information <- as_tibble(sample_data(gse_physeq)) # Data frame format

7.2 Extracting Data from an Object
As a Phyloseq object has multiple data types in different formats, it can be difficult to access information
quickly. To alleviate this issue, a method called psmelt creates a large data frame of core data, including:
OTU, Sample ID, Abundance Values, Metadata Categories, and every taxonomic level from Domain to
Species (when available).
# Phyloseq object is "melted" into a large data frame of components
gse_phydata <- psmelt(gse_physeq)
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8 Saving Items
All of the objects created thus far may be saved as RData files for easy retrieval the next time the
environment is activated. Two collections of RData will be created - one set for the Physeq object, and
another for the sample information.
# Save information from the phyloseq object
save(sample_info, sample_information, file = here("rdata_files/sample_info.RData"))

# Save phyloseq object items
save(gse_physeq, gse_phydata, file = here("rdata_files/gse_physeq.RData"))

9 Alpha Diversity
Species richness can be visualized with the plot_richness method in Phyloseq. Here, 3 metrics are
displayed side by side in facet grids. The samples have been grouped by Condition.
plot_richness(physeq = gse_physeq, x = "condition", color = "condition",

measures = c("Simpson", "Shannon", "InvSimpson")) +
geom_boxplot() +

scale_color_manual(values = color_palette) +
labs(title = "Alpha Diversity Metrics", x = NULL, y = "Alpha Diversity Measure") +
theme(legend.position = "Hide", plot.title = element_text(hjust = 0.5),

axis.text.x = element_text(angle = 0, hjust = 0.5))
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Figure 3. Shannon, Simpson, and Inverse Simpson Diversity
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9.1 Mann-Whitney U Test

In addition to the 3 metrics presented so far, other Alpha Diversity measures can be calculated with the
estimate_richness method in Phyloseq. To assess the evenness of populations in a sample, the evenness
method from the microbiome library is utilized.

By creating a new column in both tables with the sample id, they can be joined together to access the
complete dataset.
gse_ads <- estimate_richness(gse_physeq) %>% # Calculate Alpha Diversity Values

rownames_to_column(., "SampleID") %>% # Add row names to column
inner_join(sample_info) # Merge diversity values with metadata

gse_evenness <- evenness(gse_physeq) %>% rename(simpson_evenness = simpson) %>%
rownames_to_column(., "SampleID")

gse_ads <- gse_ads %>% inner_join(gse_evenness)

9.1 Mann-Whitney U Test
To determine significance of the Alpha Diversity results, a Wilcoxon–Mann–Whitney Test may be carried out.
This non-parametric statistical test is used to compare distributions between two groups, along a single
variable.

By separating the table created earlier (gse_ads) into specific groups (by a single variable), multiple metrics
can be easily referenced for testing.

The first set of groups created for analysis are split by condition.
gse_ads_crc <- gse_ads %>% filter(condition == "CRC")
gse_ads_crc_hpv <- gse_ads %>% filter(condition == "CRC+HPV")

# Shannon Diversity significance
wilcox.test(gse_ads_crc$Shannon, gse_ads_crc_hpv$Shannon)$p.value

## [1] 0.008930698
# Simpson Diversity significance
wilcox.test(gse_ads_crc$Simpson, gse_ads_crc_hpv$Simpson)$p.value

## [1] 0.002089242
# Pielou Evenness significance
wilcox.test(gse_ads_crc$pielou, gse_ads_crc_hpv$pielou)$p.value

## [1] 0.003886207

All 3 tests determined that species richness and evenness were superior in the CRC+HPV group compared to
CRC alone.

Next, 2 groups were created based on sex.
gse_ads_male <- gse_ads %>% filter(sex == "male")
gse_ads_female <- gse_ads %>% filter(sex == "female")

# Shannon Diversity significance
wilcox.test(gse_ads_male$Shannon, gse_ads_female$Shannon)$p.value

## [1] 0.4377967
# Simpson Diversity significance
wilcox.test(gse_ads_male$Simpson, gse_ads_female$Simpson)$p.value
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## [1] 0.3506966
# Pielou Evenness significance
wilcox.test(gse_ads_male$pielou, gse_ads_female$pielou)$p.value

## [1] 0.3113777

All 3 tests clearly demonstrated sex did not influence alpha diversity.

10 Beta Diversity
In addition to distance metrics, Phyloseq has a method to perform Principal Coordinate Analyses (and other
ordinance calculations), ordinate. There are dozens of different combinations of ordination methods,
distance metrics, and other parameters to control the analysis of samples.

A custom function was designed to implement the plot_ordination method from Phyloseq
(ordination_plotting). This function takes a phyloseq object and an ordination object, the output being
the Beta Diversity metric of interest.

3 Beta Diversity metrics (Weighed Unifrac, Unweighed Unifrac, and Bray-Curtis Dissimilarity) were used:
# Ordinate requires a Phyloseq object, method, & distance metric
gse_pcoa_wunifrac <- ordinate(gse_physeq, "PCoA", "wunifrac")

ordination_plotting(gse_physeq, gse_pcoa_wunifrac) +
labs(title = "Weighted Unifrac Distance")
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Figure 4. Unifrac Distance, Weighted
gse_pcoa_unifrac <- ordinate(gse_physeq, "PCoA", "unifrac")
ordination_plotting(gse_physeq, gse_pcoa_unifrac) +

labs(title = "Unweighted Unifrac Distance")
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Figure 5. Unifrac Distance, Unweighted
gse_pcoa_bray <- ordinate(gse_physeq, "PCoA", "bray")
ordination_plotting(gse_physeq, gse_pcoa_bray) +

labs(title = "Bray-Curtis Distance")
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10.1 ANOSIM

10.1 ANOSIM
ANOSIM (Analysis of Similarities) is a non-parametric statistical test used in ecology to compare the
similarity of groups of samples. It assesses whether the difference between groups is significantly greater than
the difference within groups. The R package vegan has a function to perform ANOSIM, aptly named
anosim. The analysis can be custom tailored in a number of ways, including a specific distance matrix to be
used (the distance method used is from the Phyloseq library, however). Here, ANOSIM is performed using 4
different distance measures (Weighted Unifrac, Unweighted Unifrac, Bray-Curtis, and Jaccard).
gse_wu <- distance(gse_physeq, "wunifrac")
gse_uu <- distance(gse_physeq, "uunifrac")
gse_bray <- distance(gse_physeq, "bray")
gse_jaccard <- distance(gse_physeq, "jaccard")

anosim(gse_wu, sample_information$condition)$signif

## [1] 0.136
anosim(gse_uu, sample_information$condition)$signif

## [1] 0.265
anosim(gse_bray, sample_information$condition)$signif

## [1] 0.005
anosim(gse_jaccard, sample_information$condition)$signif

## [1] 0.004

Both UniFrac distances were not significantly different between groups. Bray-Curtis Dissimilarity and
Jaccard Distance both had p < 0.01, however. This indicates that the latter 2 tests determined the
population differences between the two groups were higher than within them.

10.2 PERMANOVA
PERMANOVA (Permutational Multivariate Analysis of Variance) is also a non-parametric test which
determines the degree to which groups of samples share certain characteristics. However, PERMANOVA is
more focused on comparing group values to the overall means of the data. PERMANOVA tests the null
hypothesis that there are no differences in multivariate dispersion and location among the groups. It can be
implemented by vegan using the adonis2 method.

A distance matrix (such as those calculated in the previous step) is used as the left hand side of the formula
for the function. The right hand side is the condition or variable type that is to be compared. Lastly,
metadata for the samples being studied is necessary.
adonis2(gse_wu ~ condition, data = sample_information)

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = gse_wu ~ condition, data = sample_information)
## Df SumOfSqs R2 F Pr(>F)
## condition 1 0.016515 0.07369 1.4319 0.098 .
## Residual 18 0.207603 0.92631
## Total 19 0.224118 1.00000
## ---
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10.2 PERMANOVA

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
adonis2(gse_uu ~ condition, data = sample_information)

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = gse_uu ~ condition, data = sample_information)
## Df SumOfSqs R2 F Pr(>F)
## condition 1 0.3277 0.05643 1.0764 0.246
## Residual 18 5.4793 0.94357
## Total 19 5.8070 1.00000
adonis2(gse_bray ~ condition, data = sample_information)

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = gse_bray ~ condition, data = sample_information)
## Df SumOfSqs R2 F Pr(>F)
## condition 1 0.4122 0.07843 1.532 0.004 **
## Residual 18 4.8427 0.92157
## Total 19 5.2548 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
adonis2(gse_jaccard ~ condition, data = sample_information)

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## adonis2(formula = gse_jaccard ~ condition, data = sample_information)
## Df SumOfSqs R2 F Pr(>F)
## condition 1 0.4688 0.06817 1.3168 0.007 **
## Residual 18 6.4076 0.93183
## Total 19 6.8764 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The PERMANOVA results follow the same trend that is seen in ANOSIM - both UniFrac measures returned
non-significant differences between the groups, while Bray-Curtis & Jaccard had p < 0.01.
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11 Lactobacillus Analysis

# Filter physeq object by microbes belonging to Lactobacillus
gse_lactobacillus <- subset_taxa(gse_physeq, Genus == "Lactobacillus")

# Create data frame & filter items with zero values
gse_lactobacillus_data <- psmelt(gse_lactobacillus) %>% filter(Abundance > 0)

plotbox(gse_lactobacillus_data) +
labs(title = "Abundance of Lactobacillus in Patient Samples",

y = "Frequency of Lactobacillus")
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Figure 7. Comparison of Lactobacillus between groups
# Create groups from original data frame
lac_crc <- gse_lactobacillus_data %>% filter(condition == "CRC")
lac_crc_hpv <- gse_lactobacillus_data %>% filter(condition == "CRC+HPV")

# Use function to calculate values
groupavg(lac_crc, lac_crc_hpv)

## CRC Average = 22.5555555555556 CRC + HPV Average = 31.9350649350649
## T-Test, p = 0.00883644761675433

The results indicate a significantly higher number of Lactobacillus in the CRC+HPV group.
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12 Anaerococcus Analysis

# Filter physeq object by microbes belonging to Anaerococcus
gse_anaerococcus <- subset_taxa(gse_physeq, Genus == "Anaerococcus")

# Create data frame & filter items with zero values
gse_anaerococcus_data <- psmelt(gse_anaerococcus) %>% filter(Abundance > 0)

plotbox(gse_anaerococcus_data) +
labs(title = "Abundance of Anaerococcus in Patient Samples",

y = "Frequency of Anaerococcus")
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Figure 8. Comparison of Anaerococcus between groups
# Create groups from original data frame
ana_crc <- gse_anaerococcus_data %>% filter(condition == "CRC")
ana_crc_hpv <- gse_anaerococcus_data %>% filter(condition == "CRC+HPV")

groupavg(ana_crc, ana_crc_hpv)

## CRC Average = 24.25 CRC + HPV Average = 29
## T-Test, p = 0.606006655234261

The average number of Anaerococcus in the CRC+HPV group is higher.

However, by t-test the difference is insignificant.
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13 Turicibacter Analysis

# Filter physeq object by microbes belonging to Turicibacter
gse_turicibacter <- subset_taxa(gse_physeq, Genus == "Turicibacter")

# Create data frame & filter items with zero values
gse_turicibacter_data <- psmelt(gse_turicibacter) %>% filter(Abundance > 0)

plotbox(gse_turicibacter_data) +
labs(title = "Abundance of Turicibacter in Patient Samples",

y = "Frequency of Turicibacter")
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Figure 9. Comparison of Turicibacter between groups
# Create groups from original data frame
tub_crc <- gse_turicibacter_data %>% filter(condition == "CRC")
tub_crc_hpv <- gse_turicibacter_data %>% filter(condition == "CRC+HPV")

groupavg(tub_crc, tub_crc_hpv)

## CRC Average = 27.6363636363636 CRC + HPV Average = 38.6428571428571
## T-Test, p = 0.14340286917177

The average number of Turicibacter in the CRC+HPV group is higher.

However, by t-test the difference is insignificant.
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14 Peptostreptococcus Analysis

# Filter physeq object by microbes belonging to Peptostreptococcus
gse_peptostreptococcus <- subset_taxa(gse_physeq, Genus == "Peptostreptococcus")

# Create data frame & filter items with zero values
gse_peptostreptococcus_data <- psmelt(gse_peptostreptococcus) %>% filter(Abundance > 0)

plotbox(gse_peptostreptococcus_data) +
labs(title = "Abundance of Peptostreptococcus in Patient Samples",

y = "Frequency of Peptostreptococcus")
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Figure 10. Comparison of Peptostreptococcus between groups
# Create groups from original data frame
pep_crc <- gse_peptostreptococcus_data %>% filter(condition == "CRC")
pep_crc_hpv <- gse_peptostreptococcus_data %>% filter(condition == "CRC+HPV")

groupavg(pep_crc, pep_crc_hpv)

## CRC Average = 23.4 CRC + HPV Average = 41.9090909090909
## T-Test, p = 0.0672461043334317

The average number of Peptostreptococcus in the CRC+HPV group is higher.

However, by t-test the difference is, just slightly, insignificant.
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15 Ruminococcus Analysis

# Filter physeq object by microbes belonging to Ruminococcus
gse_ruminococcus <- subset_taxa(gse_physeq, Genus == "Ruminococcus")

# Create data frame & filter items with zero values
gse_ruminococcus_data <- psmelt(gse_ruminococcus) %>% filter(Abundance > 0)

plotbox(gse_ruminococcus_data) +
labs(title = "Abundance of Ruminococcus in Patient Samples",

y = "Frequency of Ruminococcus")
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Figure 11. Comparison of Ruminococcus between groups
# Create groups from original data frame
rum_crc <- gse_ruminococcus_data %>% filter(condition == "CRC")
rum_crc_hpv <- gse_ruminococcus_data %>% filter(condition == "CRC+HPV")

groupavg(rum_crc, rum_crc_hpv)

## CRC Average = 24.4117647058824 CRC + HPV Average = 26.0714285714286
## T-Test, p = 0.710846598304479

The average number of Ruminococcus in the CRC+HPV group is higher.

However, by t-test the difference is insignificant.
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16 Total Microbiome Difference

data_gse <- gse_phydata %>% filter(Abundance > 100 & Phylum != "NA" & Class != "NA")

ggplot(data_gse, aes(x = condition, y = Abundance, fill = Class)) +
geom_bar(stat = "identity", position = "dodge") +
facet_wrap(~Phylum, scales = "free_x") +
labs(title = "Prevalence of Microbes in Subjects by Phylum & Class", x = NULL,

y = "Abundance") +
theme(legend.position = "bottom", legend.key.size = unit(0.5, "cm"),

plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(size = 9, angle = 0, hjust = 0.5))
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Figure 12. Taxonomic Overview of Experiment Data

To get a basic overview of the types of microbes present in the samples, the physeq data was filtered to
remove rare species (only keeping entries with Abundance > 100) and unclassified taxa.

If the total microbiome is plotted by condition, Phylum, and Class, it can be seen immediately that HPV
Negative patients have an enormous abundance of Proteobacteria (especially Alphaproteobacteria), while
HPV Positive patients have a significantly lower number.
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17 Conclusion
The intestinal microbiome is a complex community with immense numbers of bacterial populations belonging
to a wide variety of taxa. These populations can be affected by a number of factors, including infection and
cancer. This analysis endeavored to compare the intestinal microbiota of patients with CRC, and patients
with concomitant HPV infection. For all three Alpha Diversity metrics tested, the CRC+HPV group
demonstrated higher community richness and evenness. The Beta Diversity metrics tested returned
inconsistent results. While UniFrac measures did not identify significant differences between the groups, both
Bray-Curtis and Jaccard did.

Five Genus level taxa were compared between the two groups, for all of these, abundance levels were higher
in the CRC+HPV patients. Upon reviewing the Phylum level frequencies, it was noted that the CRC group
contained far more microbes belonging to a single class (Alphaproteobacteria). CRC patients also had higher
numbers of Class Bacteroidia.

While the data does not ubiquitously support the claim that CRC patients with HPV have a more diverse
and balanced intestinal microbiota than those without HPV, many metrics calculated establish strong
evidence. In addition, an article by Ambrosio et al. reports that Alpha Diversity measures were indeed
higher in patient samples with CRC+HPV compared to CRC alone. The study also identified decreased
Bacteroides levels in patients with CRC+HPV.

18 Session Info
This command will output details about the R environment used to produce this document:
sessionInfo()

## R version 4.3.3 (2024-02-29)
## Platform: x86_64-apple-darwin20 (64-bit)
## Running under: macOS Monterey 12.7.4
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] microbiome_1.24.0 phyloseq_1.46.0 vegan_2.6-4 lattice_0.22-6
## [5] permute_0.9-7 qiime2R_0.99.6 gt_0.10.1 here_1.0.1
## [9] readxl_1.4.3 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1
## [13] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
## [17] tibble_3.2.1 ggplot2_3.5.0 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 gridExtra_2.3 rlang_1.1.3
## [4] magrittr_2.0.3 ade4_1.7-22 compiler_4.3.3
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## [7] mgcv_1.9-1 vctrs_0.6.5 reshape2_1.4.4
## [10] pkgconfig_2.0.3 crayon_1.5.2 fastmap_1.1.1
## [13] backports_1.4.1 XVector_0.42.0 labeling_0.4.3
## [16] utf8_1.2.4 rmarkdown_2.26 tzdb_0.4.0
## [19] xfun_0.43 zlibbioc_1.48.2 GenomeInfoDb_1.38.8
## [22] jsonlite_1.8.8 biomformat_1.30.0 highr_0.10
## [25] rhdf5filters_1.14.1 Rhdf5lib_1.24.2 parallel_4.3.3
## [28] cluster_2.1.6 R6_2.5.1 stringi_1.8.3
## [31] zCompositions_1.5.0-3 rpart_4.1.23 cellranger_1.1.0
## [34] Rcpp_1.0.12 iterators_1.0.14 knitr_1.45
## [37] base64enc_0.1-3 IRanges_2.36.0 Matrix_1.6-5
## [40] splines_4.3.3 nnet_7.3-19 igraph_2.0.3
## [43] timechange_0.3.0 tidyselect_1.2.1 rstudioapi_0.16.0
## [46] yaml_2.3.8 codetools_0.2-20 plyr_1.8.9
## [49] Biobase_2.62.0 withr_3.0.0 Rtsne_0.17
## [52] evaluate_0.23 foreign_0.8-86 survival_3.5-8
## [55] xml2_1.3.6 Biostrings_2.70.3 pillar_1.9.0
## [58] DT_0.33 checkmate_2.3.1 foreach_1.5.2
## [61] stats4_4.3.3 NADA_1.6-1.1 generics_0.1.3
## [64] rprojroot_2.0.4 RCurl_1.98-1.14 truncnorm_1.0-9
## [67] S4Vectors_0.40.2 hms_1.1.3 munsell_0.5.1
## [70] scales_1.3.0 glue_1.7.0 Hmisc_5.1-2
## [73] tools_4.3.3 data.table_1.15.4 rhdf5_2.46.1
## [76] grid_4.3.3 ape_5.7-1 colorspace_2.1-0
## [79] nlme_3.1-164 GenomeInfoDbData_1.2.11 htmlTable_2.4.2
## [82] Formula_1.2-5 cli_3.6.2 fansi_1.0.6
## [85] gtable_0.3.4 digest_0.6.35 BiocGenerics_0.48.1
## [88] farver_2.1.1 htmlwidgets_1.6.4 htmltools_0.5.8.1
## [91] multtest_2.58.0 lifecycle_1.0.4 MASS_7.3-60.0.1
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