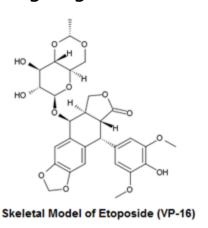
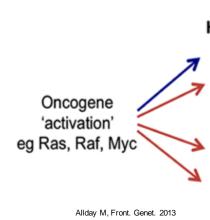
Bridging Two Worlds: The Application of High-Throughput Screeningto Structural Chemistry

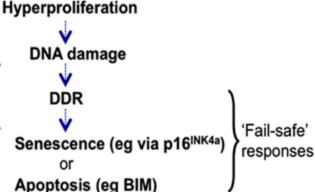
Elliot Dean

9 June 2018

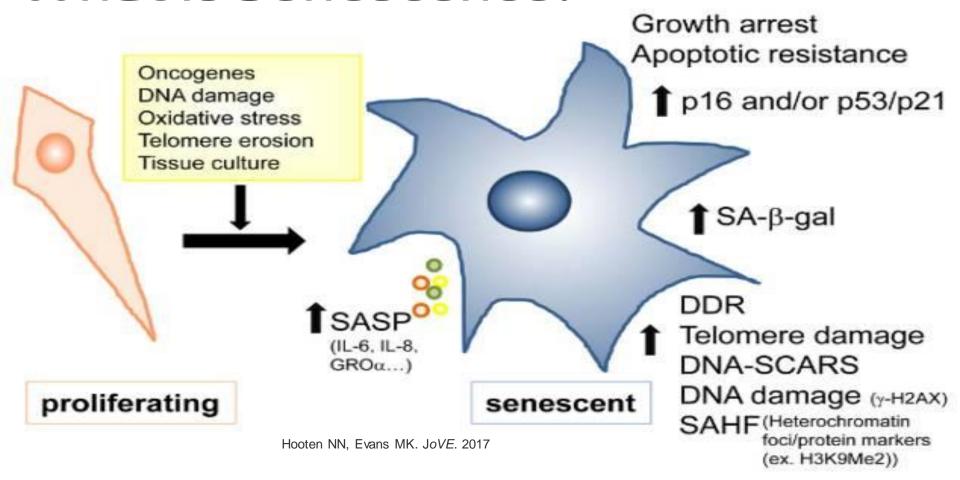
Department of Microbiology

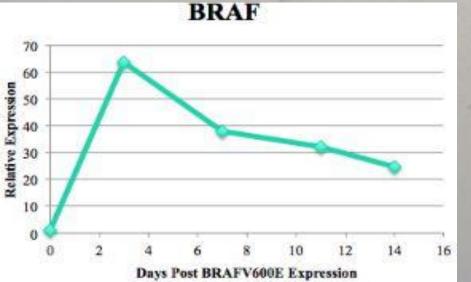

Department of Biochemistry and Biophysics

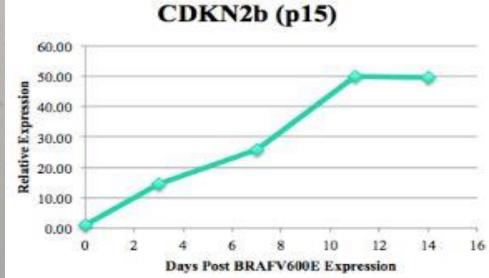

Perelman School of Medicine, University of Pennsylvania


Investigating The Role Of Secreted Factors During The Induction Of Therapy And Oncogene Induced Senescence

- Senescence is defined as a stable proliferation arrest, that can happen in many cell types
- Commonly, Senescence is thought of as a cellular response to uninhibited growth, as a type of tumor suppressive activity
- However, there are many aspects of Senescence that can negatively affect cells
- Finding ways to curb the detrimental aspects of Senescence while reinforcing the benefits is an ongoing area of research






What is Senescence?

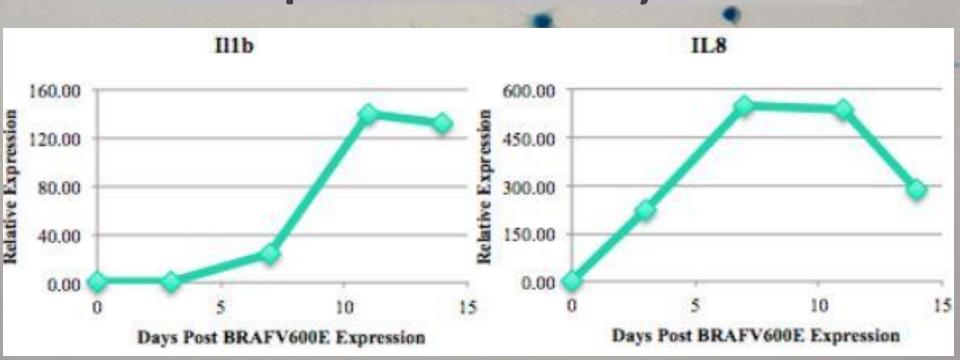
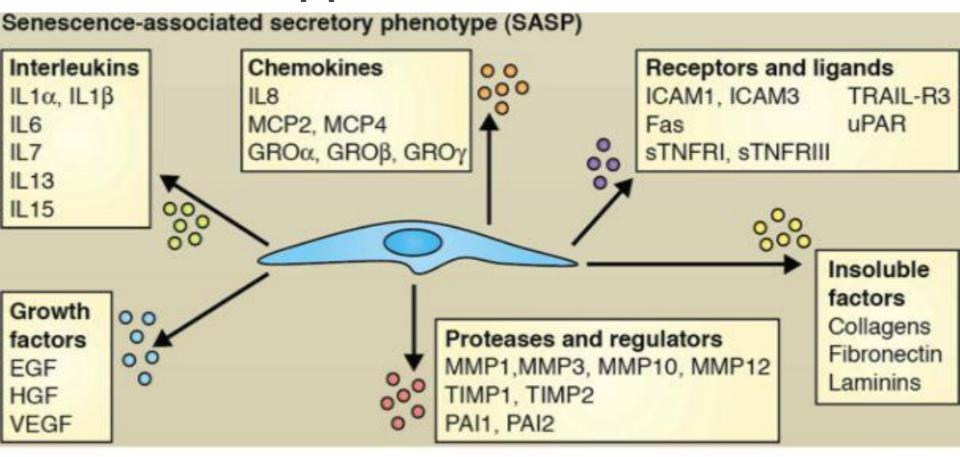

Classifying Senescence: Gene Expression & Phenotypic Changes

Figure 1 qPCR results for gene changes from day 0 senescence to day 14 qPCR was performed on 5 different samples: uninfected melanocytes (day 0), and 4 BRAF^{vscoog} melanocytes from 4 different time points (days 3, 7, 11, and 14). CT values were normalized between the GAPDH (a housekeeping gene) values of day 0 and the other samples. Once this ratio was obtained, the other genes were compared. The relative expression is the fold change in expression of that gene in the cell.



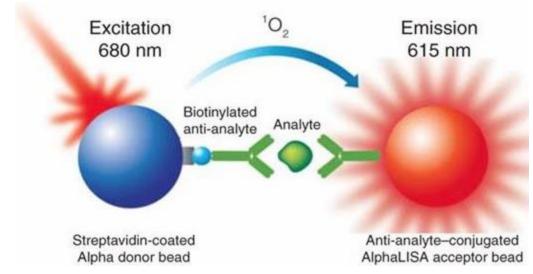
A Paradigm of Senescence: Overexpression of Cytokines

What Happens to Senescent Cells?

Finding Inhibitors for the Inflammation Response in Senescent Cells: Pilot Screen Compounds

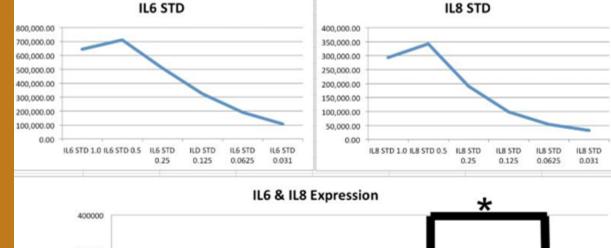
- MLL is a histone methyltransferase involved in the global regulation of gene transcription. The MLL-Menin interaction allows aberrant, uncontrolled cell division.
 MI-503 and MI-2-2 inhibit this interaction
- QNZ (EVP4593) is a potent NF-kB inhibitor. NF-kB is linked to DNA transcription and cell survival. Changes in NF-kB can lead to cancer and autoimmune disease

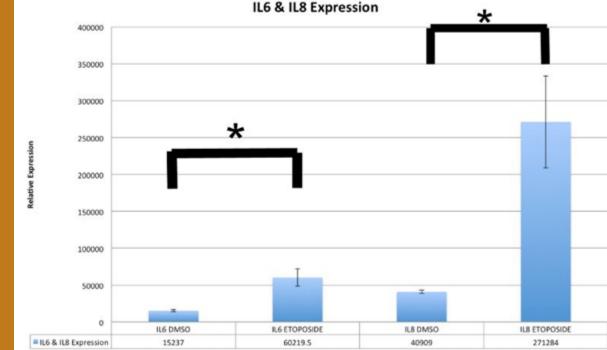
Deoxycorticosterone and dexamethasone are both steroids that abate the inflammation response


- MGCD0103 and TSA are HDAC inhibitors, predicted to be tumor suppressors, due to their epigenetic effect on p21 and pRb
- Decitabine is a hypomethylating agent, inhibiting DNA synthesis

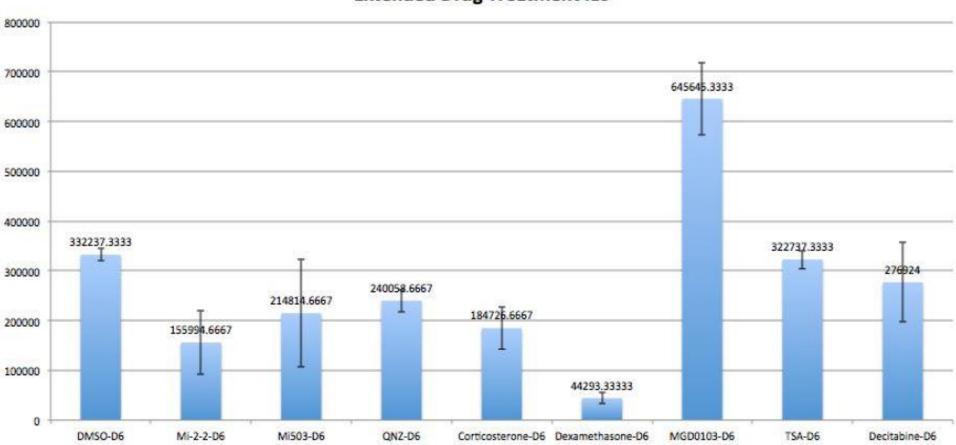
						00000
Drug Name	Target	FDA Approved	Indication	Concentration	Units	Box (AML)
MI-503	Menin		MLL leukemia	10	Mm	8
Mi-2-2	Menin		MLL leukemia	10	mM	8
QNZ (EVP4593)	NF-kB			10	mM	8
Deaxycorticost erone	GluR	Υ		10	mM	9
Dexamethason e Acetate	Glucocorticoid	Y		10	Mm	4
MGCD0103	HDAC	Υ	DLBCL	10	mM	4
Trichostatin A	HDAC			1	mM	own bax
Decitabine	DNA synthesis	Y	AML	10	Mm	4

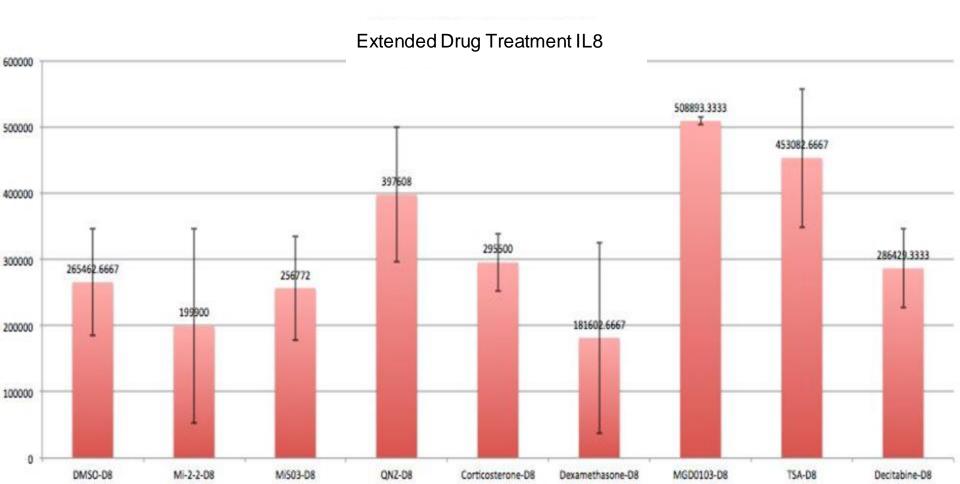
Finding Inhibitors for the Inflammation Response in Senescent Cells: Experimental Design


- IMR-90 cells (fibroblasts) were used for cytokine expression
- 96 & 384 well plates allowed for high-throughput processing
- Cells were cultured up to PD-40, and split often to prevent high confluency
- DMSO concentration was kept at 0.5%. Negative effects seen in culture were negligible
- Media additions / aspirations, and compound addition were performed using a multidrop combi, Biotek x405, and Janus workstation (respectively)


Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday
	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	
Plate Cells	Etoposide /DMSO Treatment	Refeed Media+ Compound				Serum-Free media change	Harvest supernatan t/Assay

AlphaLISA
Quantification of
Cytokines:

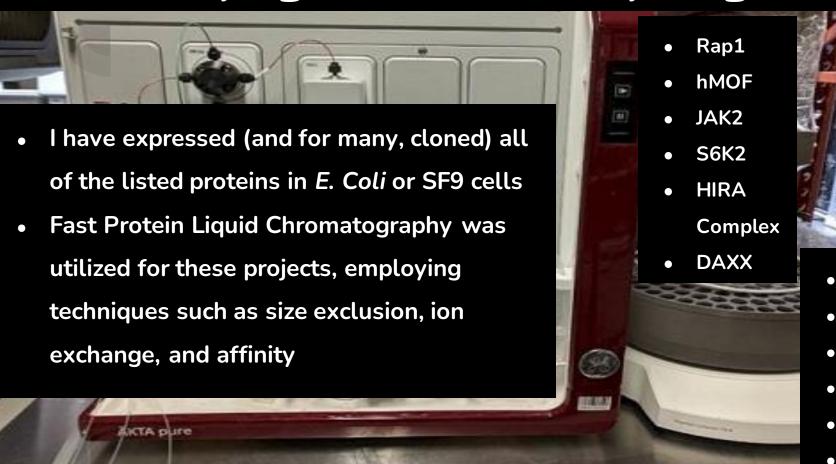

Assay
Confirmation
+
Standardization



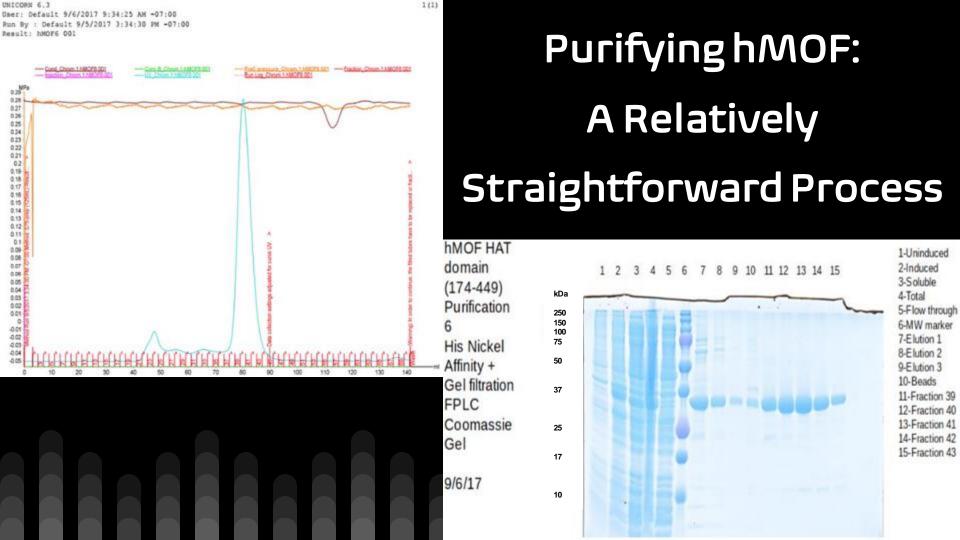
AlphaLISA Results – IL6: Compound VS Signal

Extended Drug Treatment IL6

AlphaLISA Results - IL8: Compound VS Signal

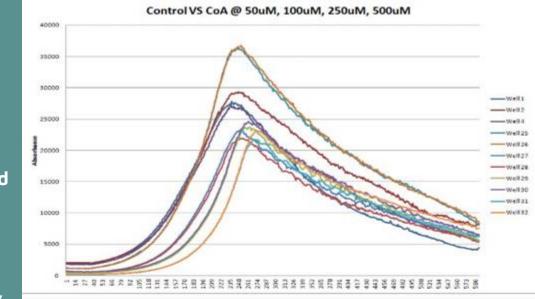


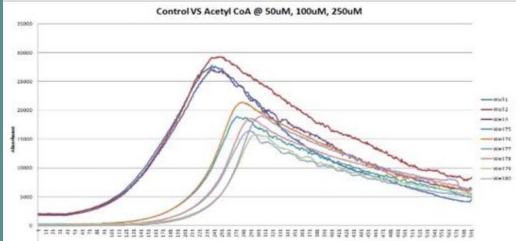
What is the bridge from HTS to Structural Chemistry at Penn?


lenn

- The UPenn Epigenetics Institute is a large group of researchers dedicated to working on epigenetics and age related diseases
- The two labs that I was a part of (HTS Core in Microbiology, Marmorstein Lab in Biochemistry) are integral to this collaboration

Purifying Proteins (a very long list)

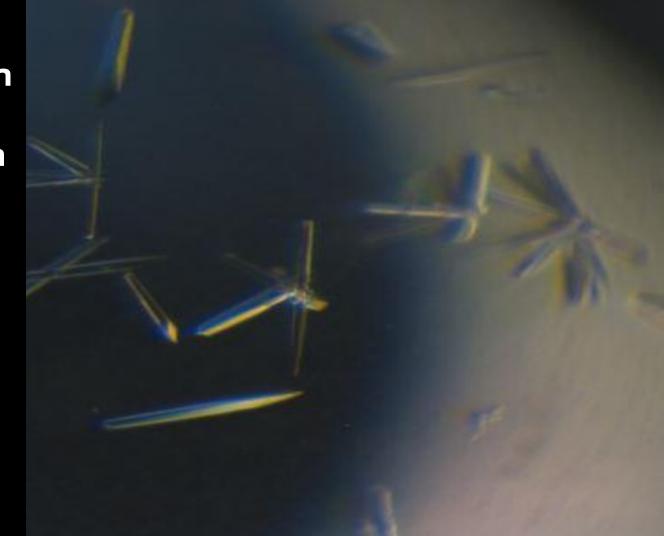


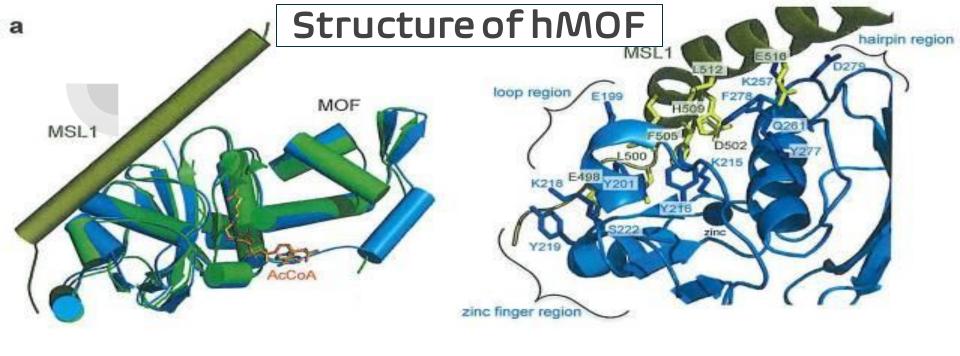

- HAT1
- BRAF
- MEK
- JADE1
- HB01
- ACSS2

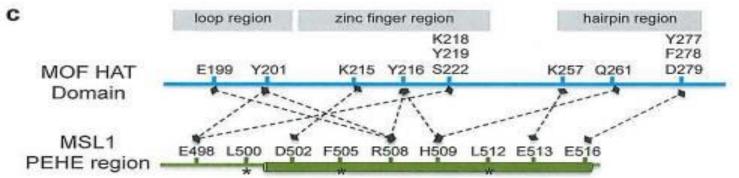
Application: Assays

- Thermal shift assays determine the melting temperature of a protein due to various factors
- These may include: pH, Salinity,
 Substrate / Protein Concentration
- The higher melting temperature observed relative to baseline indicates a stabilization of the protein (or protein / compound complex)
- The assay requires minimal resources widely available reagents, cost effective, and accommodates high-throughput applications
- A qPCR machine measures fluorescence (a dye, SYPRO orange, is the origin) as the assay plate is heated
- Over time, the dye (which binds to hydrophobic surfaces) is exposed to the reaction buffer. Signal increases until max temperature is reached, and gradually diminishes

Application:
Crystallize Protein

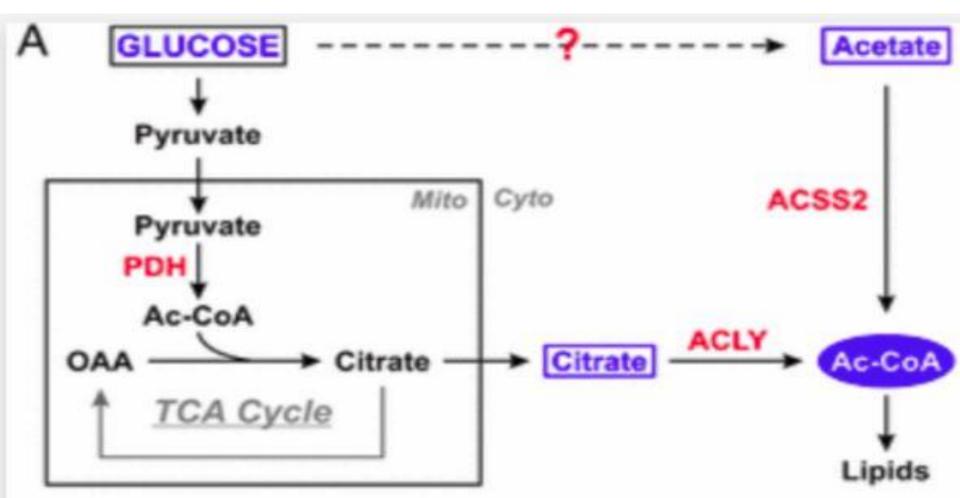

X-Ray Diffraction

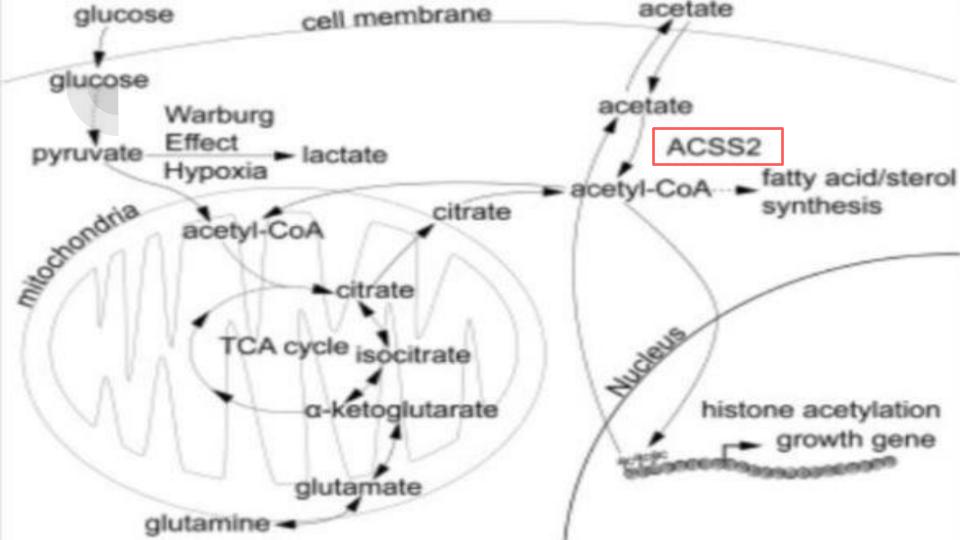

,T,



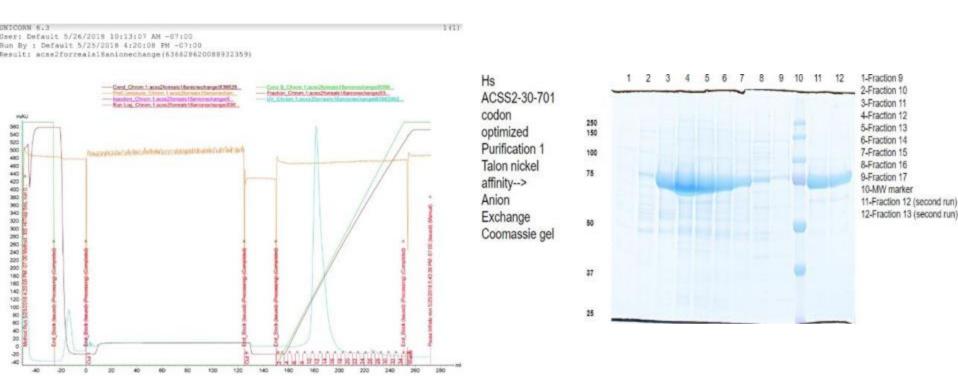
Solve Protein Structure

Advance Human Knowledge : D

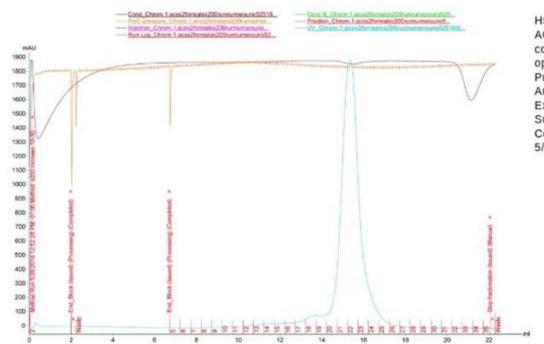




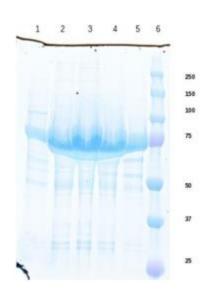
McCullough CE, Marmorstein R. ACS chemical biology. 2016


Plate	Well	MAYBRIDGE CODE	MalFormula	MolWeight	Parent MolWt	Salt Info	CATALOGUE Ref	TARGET WEIGHT (mgs)	ACTUAL WEIGHT (mes)	Smiles	Moles	Concentration	Unite	MeOH 50mM	Units
-	-		C2 H Br N2 S	165.0139	165.01	Jan IIII	CC08110FL	WEIGHT (mgs)		S1C/=NN=C1)Br	0.000029	-	1	599.	120
			C10 H12 Br N	226.1158	226.12		CC38510FL	5	-	N1(c2ccc(c2)Br)CCCC1	0.000029		mM mM	439.	
_								3							-
			C6 H7 Br N2 O2	219.0373	219.04		M007325FL	3	1777	N1(C(=CN=C1Br)C(=O)OC)C	0.000023		mM	461.	
	_		C13 H9 Br F3 N3 O S	392.198	392.19		AW00238SC	5		n1c(nccc1C(F)(F)F)SCC(=0)Nc1ccc(cc1)Br	0.000012		mM	259.	
-		AW00727	C12 H16 Br F N2	287.1744	287.17		AW00727FL	5		N1(Cc2c(cc(cc2)Br)F)CCCNCC1	0.000017		mM	346.	
			C14 H14 Br N O2	308.174	308.17		AW00960SC	5		N1(c2ccc(cc2)Br)C(=0)CC2(C1=0)CCCC2	0.000016		mM	330.	
		(1727m)(S) = 1	C20 H14 Br N O3	396.239	396.24		BT800081SC	5		N1C(=0)C(c2c1ccc(c2)Br)(CC(=0)c1ccc2cccc2c1)0	0.000012		mM	252.	
1	H2	BTB00089	C18 H16 Br N O3	374.232	374.23		BTB00089SC	5	5.08	N1C(=0)C(c2c1ccc(c2)Br)(CC(=0)c1c(cc(cc1)C)C)O	0.000013		mM	271.	
1	A3	BTB00099	C13 H12 Br N O2	294.1468	294.15		BTB00099SC	5	5.05	n1c2c(c(cc1C)C(=0)OCC)cc(cc2)Br	0.000017	1 50	mM	343.	uL
1	B3	BTB00115	C11 H10 Br N3 O	280.124	280.12		BTB00115SC	5		n1c2c(c(cc1C)C(=O)NN)cc(cc2)Br	0.000017		mM	351.	uL
1	C3	BTB00244	AN 1147 B. NO AL	405.046	105.35		0700001166	9	4.00	utartutuda letaletakua utuda eeletale	0.000043	d co	mM	243.	uL
1	D3	BTB00245									_		mM	252.	uL
1	E3	BTB00246		ПΓ		nd	Lib	ra ri	\mathbf{I} \mathbf{I}	lanageme	nt	•	mM	247.	uL
1	F3	BTB00500		ուբ		U			y IV	lanageme			mM	265.	uL
1	G3	BTB00501		•									mM	257.	uL
1	НЗ	BTB00503				•				1 1 1			mM	464.	uL
1	A4	BTB00581			10	anı	7 211		an	d Usage			mM	406.	uL
1	B4	BTB00681			' 5	9111	200	O 11,	ull	9 9 9 9 9			mM	315.	uL
1	C4	BTB00694	C14 H12 DE IN	2/4.10	2/4.10		[D10000343C		4.51	INF-CETCCCCICTION/CETCCCCT	0.000017	y 50	mM	358.	uL
1	D4	BTB01061	C11 H7 Br O3	267.0773	267.08		BTB01061SC	5	5.07	O1C(=O)C(=Cc2cc(ccc21)Br)C(=O)C	0.000018		mM	380.	uL
1	E4	BTB01179	C15 H15 Br N2 O3 S	383.264	383.26		BT801179SC	5	5	S(=O)(=O)(Nc1ccc(c(c1)N=Cc1cc(ccc1O)Br)C)C	0.000013	50	mM	261.	uL
1	F4	BTB01253	C10 H5 Br O4	269.0495	269.05		BTB01253SC	5	4.94	01C(=0)C(=Cc2c1ccc(c2)Br)C(=0)0	0.000018	3 50	mM	367.	uL
1	G4	BTB01338	C17 H17 Br N2 O4	393.235	393.24		BTB01338SC	5	4.93	N/=Cc1cc/ccc1O)Br)N=Cc1cc/c/c/c/c1)OC)OC)OC	0.000012	_	mM	251.	uL
		2107 215 U.S.L. 10	C13 H9 Br N4 O	317.145	317.14		BTB01340SC	5	7,155-5	N1=Nc2cc(ccc2N1)N=Cc1cc(ccc1O)Br	0.0000154		mM	310.	-
-		7/10/2012/2012	C18 H14 Br N3 O2	384.232	384.23		BTB01804SC	5		n1c2c(c(cc1C)C(=O)NN=Cc1c(cccc1)O)cc(cc2)Br	0.000013		mM	260.	
_			C7 H5 Br2 N O2	294,9295	294.93		BTB01924SC	5		O=C(c1c(c(cc(c1)Br)Br)N)O	0.000016		mM	334.	
		BTB01928	C12 H9 Br2 N O2	359.016	359.02		BTB01928SC	- 5		N1=C(OC(=O)c2cc(cc(c21)Br)Br)C(=CC)C	0.000013		mM	276.	
			C12 H9 Br Cl N O3	330,564	330.56		BTB01996SC			n1c2c(c(c(c1)C(=O)OCC)O)cc(cc2Cl)Br	0.000014		mM	297.	
			C12 H9 Br Cl F3 N O	378.574	378.58	_	BTB02039SC			N(=Cc1c(ccc(c1)Br)O)c1cc(ccc1Cl)C(F)(F)F	0.000014		mM	263.	
_		7777777		111111111111				3					_		
		7,777,777	C9 H6 Br N O2	240.055	240.06		BTB02093SC	5		N1=C(C)OC(=O)c2cc(ccc12)Br	0.000020		mM	410.	
1	G5	BTB02228	C19 H18 Br N3 O2	400.274	400.27		BTB02228SC	5	5.06	N1(c2c(cccc2)N2CCOCC2)C(=0)c2c(ccc(c2)Br)N=C1C	0.000012	6 50	mM	253.	uL

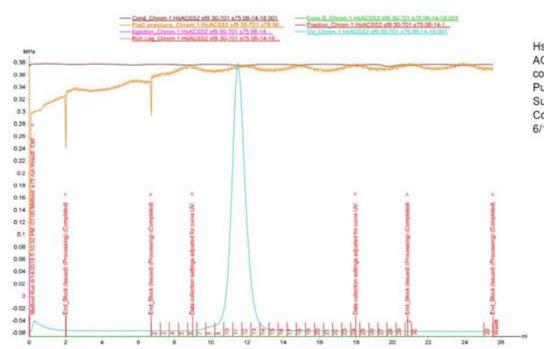
ACSS2: From acetyl-CoA Production to Histone Acetylation



ACSS2 Purification (Part I): Anion Exchange Chromatography



ACSS2 Purification (Part II): Size Exclusion Chromatography (S-200)


HS
ACSS2-30-701
codon
optimized
Purification 1
Anion
Exchange-->
Superdex 200
Coomassie gel
5/26/18

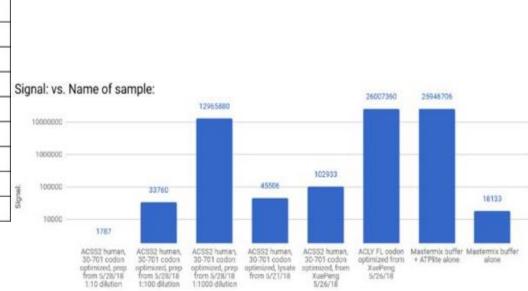
1-Fraction 20 2-Fraction 21 3-Fraction 22 4-Fraction 23 5-Fraction 24 6-MW Market

ACSS2 Purification (Part III): Size Exclusion (Superdex 75)

User: Default 6/15/2018 10:33:30 AM -07:00 Run By : Default 6/14/2018 5:10:32 PM -07:00 Result: MeaCSS2 sf9 30-701 s75 06-14-18 001

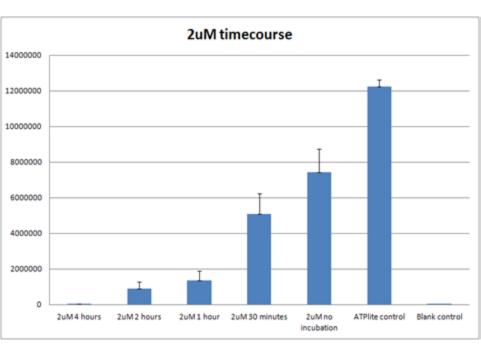
ACSS2-30-701 codon optimized Purification 2 Superdex 75 Coomassie gel 6/14/18

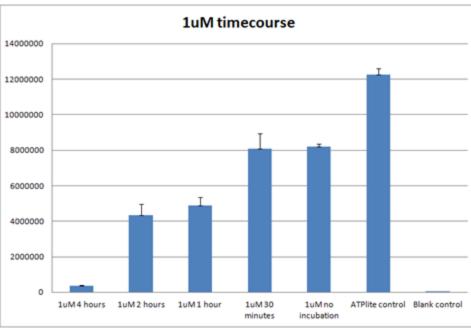
2-Fraction 6 3-Fraction 7 4-Fraction 8 5-Fraction 9 6-Fraction 10 7-Fraction 11 8-Fraction 13 10-Fraction 14

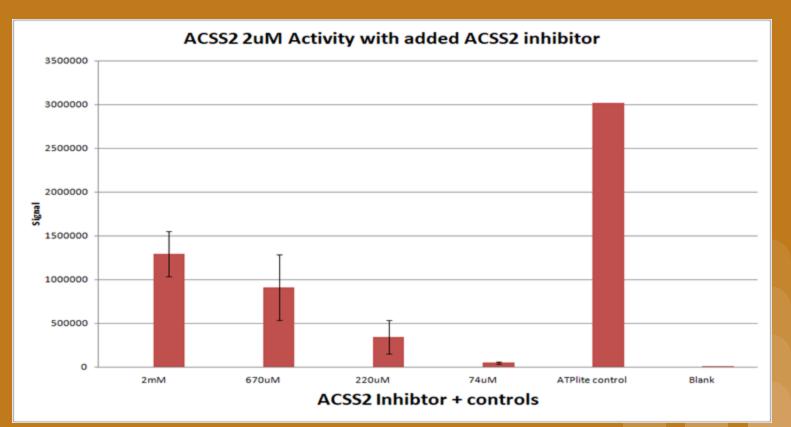

1-MW Marker

Assaying for enzymatic activity: Quantifying production of acetyl-CoA from Acetate

Experiment:


Component	Volume/Well	Final []	For 20 reactions	
10X Buffer	2.5 uL	1X	50 uL	
5 mg/mL BSA	0.5 uL	0.1 mg/mL	10 uL	
1 mM CoA	2.5 uL	100 uM	50 uL	
1 mM ATP	0.5 uL	20 uM	10 uL	
5X Enzyme (ACSS2)	5 uL	1X (calculate)	N/A	
25 mM Acetate	5 uL	5 mM	100 uL	
ddH2O	9 uL	N/A	180 uL	
Total	25 uL	N/A	400 uL	


- 3-5 enzyme concentrations in triplicate
- Prepare 500 (more or less) nM diluted enzyme in assay buffer, prepare serial dilutions
- 3. Prepare a master reaction mix minus enzyme
- Add 20 ul of reaction mix to white opaque bottom plate (coming 3570) using 16-ch pipette
- 5. Add 5 ul of enzyme, manually
- 6. Seal and Tap spin plate for 1 min at 300xg
- 7. Incubate at room temp for 1-2 hrs
- 8 Add 25ul of 1X ATPlite
- 9. Tap spin for 1 minute at 300xg
- 10. Incubate for 5 minutes
- 11. Read luminescence


Name of sample:

Refining the Assay: Concentration + Incubation Time

Screening for ACSS2 Inhibitors: It all comes down to this

Acknowledgements!

- Richmond Laboratory, Vanderbilt
 - Jeffrey Pawlikowski
- Marmorstein Laboratory, UPenn
 - Ronen Marmorstein
 - Michael Grasso
 - Adam Olia
 - Gleb Bazilevsky
- HTSC, UPenn
 - David Schultz